Geometric expansion, Lyapunov exponents and foliations

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Low density expansion for Lyapunov exponents

In some quasi-one-dimensional weakly disordered media, impurities are large and rare rather than small and dense. For an Anderson model with a low density of strong impurities, a perturbation theory in the impurity density is developed for the Lyapunov exponent and the density of states. The Lyapunov exponent grows linearly with the density. Anomalies of the Kappus-Wegner type appear for all ra...

متن کامل

Lyapunov exponents, dual Lyapunov exponents, and multifractal analysis.

It is shown that the multifractal property is shared by both Lyapunov exponents and dual Lyapunov exponents related to scaling functions of one-dimensional expanding folding maps. This reveals in a quantitative way the complexity of the dynamics determined by such maps. (c) 1999 American Institute of Physics.

متن کامل

Lyapunov Exponents

The analysis of potentially chaotic behavior in biological and biomedical phenomena has attracted great interest in recent years (1–6). Although no universally accepted mathematical definition of the term chaos exists, Strogatz (7) provides a working definition as ‘‘aperiodic long-term behavior in a deterministic system that exhibits sensitive dependence on initial conditions.’’ Aperiodic long-...

متن کامل

Lyapunov Exponents

We are interested in iterates of the logistic map T : [0, 1] → [0, 1] defined by

متن کامل

Integrability and Lyapunov Exponents

A smooth distribution, invariant under a dynamical system, integrates to give an invariant foliation, unless certain resonance conditions are present.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annales de l'Institut Henri Poincaré C, Analyse non linéaire

سال: 2009

ISSN: 0294-1449

DOI: 10.1016/j.anihpc.2008.07.001